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Abstract. The incidence of knots in lattice polygons in the face-centred cubic lattice 
is investigated numerically. We generate a sample of polygons using a pivot algorithm 
and detect knotted polygons by calculating the Alexander polynomial. If &(a) is 
the probability that a polygon with n edges is the unknot, then it is known that 
limsup,,, &(0)'/" = e-aO < 1. We find that a0 = (7.6f 0 . 9 ) ~ 1 0 - ~ .  The effect 
of the solvent quality on p i ( 0 )  is considered. Our data show that the probability of 
a polygon being knotted increases rapidly as the quality of the solvent deteriorates. 

1. Introduction 

The occurrence of knots and links in closed linear polymers poses interesting questions 
to polymer physicists, chemists and knot theorists. The effects of knots and links 
on polymer networks were considered by Edwards (1967, 1968). de Gennes (1984) 
looked at  tight knots in polymers and the effect which they have on long-time memory 
effects in melts of crystallisable linear polymers. Exciting new applications of ideas 
from algebraic topology and knot theory were made in the study of the topology of 
DNA molecules, particularly through the efforts of Sumners (1986, 1987a, 1990). The 
mechanism of enzyme action on DNA has been analysed in some cases by Sumners 
(1987b), Wasserman and Cozzarelli (1986) and Wasserman et  a1 (1985). 

There are interesting problems associated with the tabulation and counting of 
knots (Burde and Zieschang 1985). We can assign a measure of complexity to  any 
given knot (such as the minimum number of crossings in a planar projection of the 
knot). Can we find the total number of knots of any given complexity? 'Praditionally, 
knots are tabulated according to their minimum number of crossings. If we ignore 
the fact that some knots are chiral, then there is only one knot with three crossings. 
This is the trefoil. There is also one knot with four crossings, the figure eight knot. 
Any two knots I C ,  and I C ,  can be composed to form a knot k,#IC,, which we call a 
compound knot. k, and k ,  are the factors  of the knot k ,#k , .  It is easily seen that 
the operation # is associative and commutative. If a knot cannot be written as the 
composition of two factors, then we call the knot prime. The trefoil and figure eight 
knots are both prime, but the granny knot is compound, since we can factor it into 
two trefoils. 

Counting prime knots by the minimum number of crossings is a difficult problem 
that has recieved much attention in the literature. Ernst and Sumners (1987) proved 
that the number of prime knots grows at least exponentially with the minimum number 
of crossings. This is a problem in the statistics of knots, and in this paper we consider 
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a similar problem. Given a lattice polygon with n edges embedded in some lattice 
A c R3, what is the probability that the polygon is knotted? 

Vologodskii et a1 (1974) were the first to conduct a detailed numerical study in 
statistical knot theory (a term due to D W Sumners). Such a study typically consists 
of two parts. The first is the numerical simulation of the circular polymer molecules, 
modelled by polygons on the lattice (Hammersley 1961, Kesten 1963, 1964, Martin 
et a1 1967). Since the incidence of knots is low in polygons, most studies tend to  
ignore the self-avoiding property of the polymers and focus on polymers with Gaussian 
statistics instead (Frank-Kamenetskii et a1 1975, des Cloisseaux and Mehta 1979). 
Michels and Wiegel (1984, 1986) consider a closed-ring model of vanishing thickness 
as a model for circular polymers; the vertices are point masses and the edges are 
chemical bonds with a restoring harmonic force around some edge length a. The ring 
is then placed in a random heat field, which crumples it. 

The invention of highly efficient Monte Carlo algorithms for the simulation of lat- 
tice polygons (Dubins et a1 1988, Madras et a1 1990) solved the problems encountered 
with the simulation o f  circular polymers. We (Janse van Rensburg et a1 1990) proved 
that  the pivot algorithm is ergodic and reversible in the face-centred cubic (FCC) lat- 
tice and performed numerical simulations which demonstrated the efficiency of this 
algorithm. There is an advantage in studying the incidence of knots in polygons in 
the FCC lattice: on the simple cubic lattice, we can make a polygon with 24 edges 
which is a trefoil while on the FCC we need only 16 edges (figure 1). 

[ a  i I b )  

Figure 1. (a) A trefoil on the simple cubic lattice with 24 edges. ( b )  A trefoil on 
the FCC lattice with 16 edges. 

The second part of a numerical simulation is the detection of knots through the 
calculation of an invariant. Vologodskii et a1 (1974), Frank-Kamenetskii et a1 (1975) 
and Michels and Wiegel (1984, 1986) all calculated the Alexander polynomial (A(t)) 
at various values o f t .  We shall follow the same route since, as we shall point out, it 
is more efficient to calculate A(t) than, for example, the Jones polynomial. 

The theoretical understanding of knotted walks and polygons came slowly. Kendall 
(1979) proved that every Brownian walk in three dimensions contains infinitely many 
disjoint 'knots' in every time interval. Sumners and Whittington (1988) and Pippenger 
(1989) proved independently that if p z ( 0 )  is the probability that a polygon in Z3 with 
n edges is the unknot (0), then &(0) goes to zero exponentially fast with n as n tends 
to infinity: that is 
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Very little is known about the rate at  which p:(0)  goes to zero as n + w .  Preliminary 
results by Frank-Kamenetskii et  a1 (1975) indicate that a. is very small. In this paper 
we shall calculate a. for the FCC lattice. We shall also consider the effect of the 
‘solvent’ on a,,, which is important since it may influence the analysis of experiments 
by indicating the effect which a bad solvent will have on the knot probability of circular 
polymers. 

In section 2 we briefly consider the pivot algorithm. We explain the extension 
of this algorithm to simulate polygons in a bad solvent and discuss strategies for 
improving it. In subsection 2.2 we demonstrate the effectiveness of the algorithm by 
calculating the heat capacity of the polygons. 

In section 3 we consider the detection of knotted polygons. We discuss strategies 
which can be used to speed up this part of the simulation and consider their effec- 
tiveness, in particular the ‘smoothing’ of the polygons and the use of Reidemeister 
moves. In section 4 we present our numerical data. The knot probability of polygons 
in a good solvent is considered in subsection 4.1. We estimate a,, in equation (1.1) 
and find a. = (7.6 f 0 . 9 ) ~ 1 0 - ~  (where the error bar is one standard deviation). In 
subsection 4.2 we consider the effect of a bad solvent on the knot probability and we 
find that a,, increases significantly as we decrease the quality of the solvent. These re- 
sults imply that there is a correlation between the knot probability and the ‘collapsed’ 
state of the polygon. We demonstrate this correlation in subsection 4.3. Finally, we 
conclude the paper with a few remarks and observations in section 5 .  

2. The pivot algorithm and polygons 

2.1. Ergodicity and reversibility 

The pivot algorithm is a Monte Carlo algorithm which was invented by La1 (1969) 
for the simulation of self-avoiding walks in the canonical ensemble. The algorithm 
was studied in detail by Madras and Sokal (1988) who called it the pivot algorithm. 
Madras e t  a1 (1990) extended the pivot algorithm to polygons on the simple cubic 
lattice, extending a two-dimensional result of Dubins et  a1 (1988). We (Janse van 
Rensburg et  a1 1990) subsequently studied the algorithm on the FCC lattice. 

A polygon w is defined as a sequence of lattice sites (vertices) wo,  wl, w 2 , .  . . , w n ,  
such that wo = w,, wi and wiS1 are neighbours in the lattice and the wi are distinct 
for all i, and the associated edges between pairs of vertices wi and w ~ + ~ .  The basic 
elementary move of the algorithm is as follows. Choose two different vertices on w 
(the current polygon) at  random with (for example) a uniform distribution (this is 
sufficient, but not necessary), say wi and wj.  With these p ivo t s ,  apply an elementary 
transformation from a list of possible transformations to the shorter piece of the poly- 
gon (or alternatively, to the piece not containing the origin). If the result is a polygon 
(self-avoiding), then it is accepted, becoming the current polygon. Otherwise it is 
rejected, and the current polygon does not change. The list of possible elementary 
transformations is given by the octahedral group, which is the symmetry group of 
the cubic lattices. Among others, the elements of this group are point reflections (in- 
versions), reflections through the lattice planes containing two of the three Cartesian 
axes of the FCC, reflections through planes inclined at  45’ to two Cartesian axes and 
containing the third axis (45O-planes) and 90O-rotations about the Cartesian axes. In 
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each case the ‘origin’ of the transformation is taken to  be the midpoint of the line seg- 
ment joining the two pivots. We (Janse van Rensburg et a1 1990) proved the following 
theorem. 

Theorem 2.1. The pivot algorithm applied to polygons on the FCC lattice is ergodic, 
provided that inversions, lattice plane reflections, and either 45O-plane reflections or 
90°-rotations, have positive probability of occurring as elementary transformations in 
the Monte Carlo algorithm. 

Let R, be the set of all polygons with n vertices. We view the algorithm as a 
realisation of a Markov chain on R,. Let us now consider reversibility and the sim- 
ulation of a bad solvent. Let R,(m) C R, be the set of all polygons with n vertices 
and m contacts (a ‘contact’ between two vertices occurs when two vertices are nearest 
neighbours on the lattice, but not nearest neighbours on the polygon). Let the cardi- 
nality of R,(m) be p,(m). We assign equal weights to the polygons in R,(m), but the 
polygons in R,(m) and R,(m’) are not assigned equal weights. The effect of the sol- 
vent is taken into account by introducing an attractive monomer-monomer interaction 
between the vertices of the polygon (a  repulsive monomer-solvent interaction could 
have been used instead since it only changes the partition function by a constant). So, 
for each w E R,(m) we assign a weight em#, where 6 is a reduced energy associated 
with the monomer-monomer interaction. We implement the simulation of polygons 
with this weight by using the Metropolis algorithm (Metropolis et a1 1953). Then the 
algorithm realises a Markov chain with a state space R, and an invariant probability 
measure 

where w has m contacts. 
To see this, consider the following. Suppose that w, E R,(m) and U,, E R,(m’). 

Let p(w, , vml, t )  be the probability that vml can be obtained from w, via the elemen- 
tary transformation t with pivots r1 and r2 (for simplicity, suppose that we choose r1 
and r2 uniformly on w,). Since the weight associated with w, is em#,  and with v,, 
is e”’, then p(w,, vml,t) is given by 

where q ( t ;  r l ,  r2 )  is the probability that we choose to perform the elementary trans- 
formation t given the pivots r1 and r 2 .  Since t leaves r1 and r2 unchanged, it follows 
that 

where t-’ is the inverse transformation o f t .  (Note that every elementary transfor- 
mation, except for 90°-rotations, is its own inverse. To have reversibility, we must 
give 90°-rotations and -90°-rotations equal probability of occurring. Since the list of 
possible transformations depends only on the relative position of the pivots we have 
q(t; rl,  r s )  = q ( t - l ;  rl, r 2 ) . )  Summing over all r1 and r 2 ,  and all t which changes w, 
into umIr we find that 
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where p(w-v) is the probability of obtaining U from w via any choice of pivots and 
any elementary tansformation. 

The basic elementary transformation is described by a matrix P = {p(w-U)} 
which has the following properties. 

(1) For each w and v in R, there exists an M 2 0 such that the M-step probability 
from w to v, p M ( w - v ) ,  is positive. This follows immediately from theorem 2.1 and 
equation (2.2). This is ergodicity. 

(2) For each U,,, E R,(m), and for each m 

m’ v,) ER,(m‘) 

which we easily verify from equation (2.1) and (2.4). 
Therefore, rW is the unique limit distribution of the Markov chain on R, with 

transition probability matrix P (Kemeny and Snell 1976). 
We programmed this algorithm in FORTRAN 77 on an Apollo 10000 computer. We 

selected pivots with uniform probability and used inversions, lattice plane reflections, 
45O-plane reflections and 90°-rotations as possible elementary transformations. For 
each choice of pivots, we picked an elementary transformation with uniform proba- 
bility from a list of possible transformations. To compensate for bias in our simu- 
lation due to the initial configuration of the polygon we discarded the first 150000 
attempted transformations before we started observing the polygons. To check for self- 
intersections and to count the number of contacts in proposed polygons efficiently, we 
used hash-coding (Knuth 1973, Horowitz and Sahni 1976). 

We calculated sample means using standard statistical techniques. Error bars were 
estimated by calculating the integrated autocorrelation function using the methods 
developed by Madras and Sokal (1988). 

2.2. Heat capacity 

In this section we consider briefly the effect of an increase in the contact potential q5 
on the properties of polygons. An increase in qh simulates an increasingly bad solvent, 
and it is believed that there exists a critical point qhc where the walks or polygons will 
undergo a collapse transition and precipitate from the solution. This is known as the 
&point (McCrackin e t  a1 1973, Rapaport 1974, Douglas and Freed 1985). 

For the FCC lattice numerical estimates for qhc vary significantly. McCrackin et 
a1 (1973) estimated a value near 0.13 while an exact enumeration study by Rapaport 
(1974, 1976) suggests that it is somewhere between 0.15 and 0.18. The difficulty in 
calculating a good value for qhc stems from the fact that the apparent value of qhc may 
be dependent on n ,  the length of the walks or polygons that we consider, and that it 
will converge only slowly to its infinite-n value. 

The heat capacity of walks or polygons will be a good detector of a phase transition 
at  +c. Let ci be the number of contacts in the ith polygon in the MC simulation. Then 
the heat capacity is defined as 

R, = ( e ? )  - (CJ? ( 2 4  

We calculated R, for n = 200, 400 and 800 with + taking values between 0.0 and 
0.15. An important feature of the algorithm is the acceptance fraction f of proposed 
transformations. The lower f ,  the longer we expect the autocorrelation times in our 
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simulation to  be. For n = 800, f = 0.24 for 4 = 0.0, but it steadily decreases to  
f = 0.074 for 4 = 0.10 and f = 0.016 for 4 = 0.15. To compensate for the drop in f 
for larger 4 we took observations in our simulation only every m attempted transfor- 
mations, where we steadily increased m with increasing 4. We observed the number 
of contacts 50 000 times, each observation separated by m attempted transformations, 
m = 10 for 4 = 0.0 and m = 250 for 4 = 0.15 performing 12.5 x lo6 iterations. We 
plotted '?in against 4 as shown in figure 2. 

103 

15 

- 
2 10 
k 

1 I T 

i n.401 

0 0 . 0  n =2( 

0 0.04 0.08 0.12 0 
9 

Figure 2. The heat capacity of polygons in a solvent with contact potential 4. The 
three sets of points corresponds t o  n = 200 (O) ,  400 ( A )  and 800 (0), where n is the 
number of edges in the polygon. For n = 800 it is apparent that there is a collapse 
transition near q5 = 0.15. The full curve is from a best fit to the data (equations 
(2.15) and (2,16)). 

For finite n we do not expect a singularity in Xn, but we expect that  31, will 
increase rapidly with 4 near the critical point. For n = 200 and n = 400 there is 
not much sign of a transition for the range of 4 values studied, but for n = 800 7fn 
increases rapidly as 4 approaches a critical point near 0.15. If we assume that 

where cy is some effective exponent, then a best fit to the data will estimate the critical 
value of 4.  We expect strong corrections to this scaling form, which will influence the 
value of cy significantly. A least-squares fit to the data gives, for n = 800 

4,(800) = 0.153 f 0.005. (2.8) 

3. Detecting knots in polygons 

In this section we consider the detection of knots in lattice polygons. We discuss 
methods for speeding up this process and study numerically the effectiveness of these 
methods. 
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3.1. The Alexander polynomial 

The calculation of the Alexander polynomial for lattice polygons has been considered 
by Vologodskii et  a1 (1974), Frank-Kamenetskii e t  a1 (1975) and Michels and Wiegel 
(1986). Let w be a lattice polygon with 7t vertices, The first step in finding the 
Alexander polynomial A ( t )  at a given value o f t  is to find the Alexander matrix of a 
regular planar projection of w .  A regular projection of w ,  P(w)  is obtained by first 
rotating w in R3 by multiplication with an element of the rotation group SO(3) with 
irrational entries. This is to make sure that no two projected vertices of w will fall on 
each other. 

The next step is to search P(w) for double points (which corresponds to over- 
and underpasses) and to tabulate them. We did this in a manner very similar to the 
Dowker-Thistlethwaite code (Dowker and Thistlethwaite 1983, Thistlethwaite 1985, 
Sumners 1987a). Let the chemical coordinate of a point 2: E P(w)  be the distance, 
along the projection, of 2: from some arbitrary chosen origin. Suppose that P(w)  has 1 
double points (crossings). Each crossing corresponds to an underpass of the projection. 
If we define a direction along P(w)  then each crossing is either positive or negative, 
as induced by the direction on the strands involved in the crossing. We illustrate 
this in figure 3. Record the following information about the crossings: the chemical 
coordinates of each underpass and overpass (21 in all), and the sign of each crossing. 
We tabulate these data by increasing chemical coordinate of the underpasses. We call 
this table the table of crossings of the projection P(w).  

T +  
I -I- 
+ - 

Figure 3. A + crossing (left) and a - crossing (right) in a projection. 

It is now a simple task to construct the Alexander matrix from the information 
in the table of crossings (Fox 1962, Vologodskii e t  a1 1974). The underpasses divides 
P(w) into 1 arcs, and we label these arcs by integers 1 to I ,  the ith arc runs from the ith 
underpass to the (i + 1)th underpass. The rows in the Alexander matrix correspond 
to the underpasses: Suppose that the j t h  arc overpasses the ith underpass, then the 
1 entries in the i-row of the Alexander matrix are given by 

aik = (6 i j  + J i + l , j ) ( b i + l , k  + b i b )  + ( 1  - b i j ) ( l  - b i + l , j ) f ( t )  Vlc = 1 , 2 , .  . , I  (3.1) 

and where 1 + 1 is identified with 1. The function f ( t )  is 

and 
f(') = ('ik - th i+ l ,k  + ( t  + 1 ) b k j )  

f ( t )  = (-tb, ,  + 6i+l,k + ( t  - l)bkj) 

for + crossings 

for - crossings. 

(3.2) 

(3.3) 
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The Alexander polynomial is the determinant of a minor of the Alexander matrix. 
The polynomial is not uniquely defined, it usually has a factor m being an 
arbitrary integer. 

A(t) does not distinguish between all knots. An examination of a knot table (see 
e.g. Burde and Zieschang 1985) reveals that the knots 82, and 3,#3,, 821 and 3,#4,, 
and 8,, and 3,#3,#4, have the same Alexander polynomials. In cases like these 
we always assumed that it is the knot with fewer crossings that we detected. We 
calculated A(-1) for all our polygons. If there is more than one knot which has the 
same value of A(-l) ,  then we calculated A(-2) too. The calculation of A(-2) is 
slightly ambiguous, since the algorithm returns the number f2*"A(-2),  m being 
some integer. To deal with this we constructed ( 2 ~ 2 * ~ A ( - 2 ) ) 2 ? ~ ,  where we choose 
L to be the largest integer such that this product is an odd integer. In some rare 
cases there are knots for which A(-1) and A(-2) are the same, but A(-3) differs (for 
example 8,, and 31#31#31). In those cases we calculated A(-3) too. In this way we 
could detect all knots up to seven crossings, and up to eight crossings if we ignore the 
few knots with degenerate Alexander polynomials. 

The calculation of A(t) from the Alexander matrix takes 0(13) operations (to 
calculate the determinant), where 1 is the number of crossings in the projection of the 
polygon. In contrast to this, the Jones polynomial takes O(2') operations (Kaufman 
1989), and it is apparent that it will not be able to compete with A(t) in calculations 
of a statistical nature. Lattice polygons are not smooth objects, and we can expect 
numerous crossings in the projections, so that calculation of the Jones polynomial will 
be impracticable under these circumstances. 

3.2. Smoothing the polygon 
A polygon on the FCC lattice is a very irregular object with many sharp angles. This 
fact complicates the calculation of the knot type of a polygon, since a projection will 
contain many redundant crossings due to the irregular form of the polygon. It may 
therefore be advantageous to 'smooth' the polygon before we search for crossings in 
the projection. 

l a )  

Figure 4. The two local moves used to 'smooth' the polygon. 

One implementation of this idea is to snip redundant edges out of the polygon, 
simultaneously reducing the number of edges and making the polygon less irregular. 
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We used two local moves to perform this task. These are illustrated in figure 4. The 
search for locations on the polygon where we can apply the moves in figure 4 takes 
O(n)  operations, where n is the number of edges in the polygon. In contrast to this, to 
find the crossings in the projection takes O ( n 2 )  operations, since it involves comparing 
every two edges on the polygon. Smoothing is therefore very likely to be a successful 
strategy, since we perform O(n)  operations to reduce n before we perform a task taking 
O(n2)  operations. We discuss the efficiency of smoothing in subsection 3.4. 

9.9. Reademeister moves  

Reidemeister proved in the 1920s that two knots (or links) are ambient isotopic (can be 
deformed into one another without strand passage) if and only if their projections can 
be transformed into one another by a planar isotopy and three Reidemeister moves, 
illustrated in figure 5 (Reidemeister 1932). The projection of a knot may have many 
redundant crossings, and the application of the Reidemeister moves will reduce the 
number of such crossings. On a computational level, this reduction in the number of 
crossings should speed up the detection of knots. 

W - n 
I1 / \ n 

-Y- / 
111 

Figure 5. Reidemeister moves. 

We explained the construction of a table of crossings for a projection in subsec- 
tion 3.1. The advantage of this table is that we can perform the moves Reidemeister I 
and Reidemeister I1 directly in the table of crossings. The only extra calculation nec- 
essary is the ordering of the overpasses in increasing chemical coordinate, this takes 
O(llog21) operations, where 1 is the number of crossings. This is because we have 
to search the arcs of the polygon between successive underpasses for overpasses to 
determine whether we can perform Reidemeister I or 11. 

We have already pointed out that the calculation of the Alexander polynomial 
takes 0(13) operations, it is therefore not obvious that for smallish 1 it will be of any 
benefit to perform these moves. In the case of the Jones polynomial, which takes O(2') 
operations to construct, it may well be essential to perform these moves. In the next 
section we consider the effectiveness of smoothing and the Reidemeister moves in this 
calculation. 
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3.4. The egectiveness of Smoothing and the Reidemeister moves 

We start by summing up the ideas in subsections 3.2 and 3.3. In subsection 3.2 
we argued that searching the polygon for crossings takes O(n2) operations, while 
performing the smoothing moves in figure 4 takes only O(n)  operations, where n is 
the number of edges in the polygon. If 1 is the number of crossings in the projection of 
the polygon, then calculating the Alexander polynomial takes 0(13) operations, while 
performing Reidemeister I and I1 takes 0(1 log,l) operations. 

Table 1. CPU time (in seconds) taken by the algorithm to detect the knot type of 
100 polygons of length n = 800. 6 is the contact potential, and m is the number of 
attempted pivot transformations between every two observsations. The CPU times for 
the algorithm, with and without Reidemeister moves and smoothing, are recorded. 

~~~ ~~~ ~ ~~ ~ 

4 m None Reid. I, I1 Smoothed Both 

0 10 490 480 130 130 
0.10 50 690 670 150 150 
0.15 250 910 840 210 200 

Since we expect that n >> 1 in most cases, most of the computing time will be 
taken by the search for crossings in the projection of the polygon. It is therefore to 
be expected that smoothing will be more efficient than the Reidemeister moves at  
speeding up the algorithm. To test this, we performed a series of short runs, recording 
the CPU time used by the algorithm to find the knot types of 100 polygons with 
n = 800 for I$ = 0, 0.10 and 0.15, the polygons are separated by 10, 50 and 250 
attempted pivot transformations each. Our results are shown in table 1. m is the 
number of iterations performed between every two observed polygons. 

Table 2. The effect of Reidemeister moves and smoothing on n, the number of edges 
in the polygon, and I ,  the number of crossings in the planar projection of the polygon. 
Q is the contact potential and m is the number of attempted pivot transformations 
between every two observations. The entries are in the format (n, I ) .  

4 m None Reid. I, I1 Smoothed Both 

0 10 (800,265) (800, 55) (390, 80) (390,lO) 
0.10 50 (800,400) (800,135) (365,105) (365,25) 
0.15 250 (800,555) (800,230) (315,115) (315,35) 

The column marked ‘None’ records the CPU time of the calculation without 
smoothing or Reidemeister I and 11. We then switch the Reidemeister moves on, then 
smoothing, and then both. The increase in computing time with d, is due to the in- 
crease in m, the number of attempted pivot iterations between every two observed 
polygons. The times are recorded to the nearest 10 s. We notice that the application 
of Reidemeister moves I and I1 does not bring significant benefits, while smoothing 
reduces the CPU time by as much as 75%. These results do not imply that the ap- 
plication of Reidemeister moves is useless. To see their real value, let us consider the 
effect of the Reidemeister moves and smoothing on the number of edges (n )  and the 
the number of crossings ( I )  in the projection of a polygon. We recorded the number 
of edges and the number of crossings for the short runs in table 1 and listed these, 
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to the nearest 5 ,  in table 2, which has the same format as table 1. The entries in 
table 2 have the form (n, I ) .  The Reidemeister moves reduce the number of crossings 
by more than 50% in each case, but our data show that smoothing performs better 
than the Reidemeister moves: It reduces n by about 50% and reduces the number of 
crossings more than the Reidemeister moves do for larger values of the contact poten- 
tial 4. Smoothing becomes more effective with increasing 4, which is to be expected. 
The larger 4, the more crumpled we expect the polygons to be, so there will be more 
locations where we can apply the smoothing moves. 

While the Reidemeister moves are not very effective in the calculation of the 
Alexander polynomial, they will be essential in the calculation of the Jones poly- 
nomial. We see that if we apply both smoothing and the Reidemeister moves, then 
the number of crossings is reduced to a level where calculation of the Jones polynomial 
may become possible, since (especially for the case 4 = 0) the numbers of crossings 
are low enough to consider this possibility. We only used the two moves in figure 4 in 
our smoothing subroutine. It is a simple matter to add additional moves to this list, 
or to imagine alternative schemes to extend this concept to make it more efficient. 

4. Numerical results 

In this section we present our numerical data on the incidence on knots in lattice 
polygons on the FCC lattice. We run the algorithm for mN attempted pivot transfor- 
mations, where we determine the knot type of each polygon N times, each observation 
separated by m attempted transformations. Typically, we chose N = 50000 (or less 
in some cases), and m was adjusted to compensate for the decrease in the acceptance 
rate with increasing 4. We recorded the knot type and the number of contacts for 
each polygon. The most complicated prime knot which we found was lo,, and the 
most complicated compound knots were 3,#4, #5, and 3,#1036. 

To present fair error bars on our estimates, it was necessary to calculate the auto- 
correlation times in our MC simulations. This was done using the techniques developed 
by Madras and Sokal (1988). In subsection 4.1 we consider the knottedness of poly- 
gons in a good solvent, and we consider the effects of a bad solvent in subsection 4.2. 
The results in subsection 4.2 suggest that there is a strong correlation between the 
‘state of collapse’ of a polygon and the probability that it is knotted. We explore this 
in subsection 4.3. 

4.1. The incidence of knots in a good solvent 
Vologodskii et al (1974) reported that the probability of finding a knot in a lattice 
polygon is very small for moderate values of n (about 100 edges): of the order 
to loe5. In contrast to this, it is known that a lattice polygon will be a knot with 
probability 1 in the limit n-ca. In fact, the probability that a polygon is the unknot 
goes to zero exponentially fast as n-oo. If p z ( 0 )  is the probability that a polygon with 
n edges is the unknot (0), then Sumners and Whittington (1988) and, independently, 
Pippenger (1989), proved the following theorem. 

Theorem 4.1. 

limsup (p~(0))’’~ = e-ao < 1  
n-oo 

where a,, is a positive constant. 
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Table 3. The knot probability pO,(K) in a good solvent. The number of edges n was 
varied from 200 to 1600 and the contact potential 4 = 0. The autocorrelations TK 
are given in units of m iterations, where m is the number of attempted transitions 
between evay two obserwtions. 

n N 

200 50000 19 0 19 (3.8 f 1 . 6 ) ~ 1 0 - ~  1 .08 f 0.02 
400 50000 118 3 121 (2.42 f 0.44) x 2.04 f 0.06 
800 50000 202 10 213 (4 .26 f  0 . 6 9 ) ~ 1 0 - ~  2.8 f 0.1 

1600 20000 225 14 239 (1.20 f O.27)x1Om2 6.2 f 0.7 
1200 25000 227 3 234 (9.4 f 2.6) x 9.2 f 1.1 

I I I I I 

n 
0 300 600 900 1200 1500 

Figure 6.  Plot of logp0,(0) against n. The full line is from the best fit to equa- 
tions (4.1) and (4.2). 

Let & ( K )  = 1 - &(0) be the probability that a polygon with n edges is a knot. 
We calculated & ( K )  at 4 = 0 for n = 200, 400, 800, 1200 and 1600. Our data are 
displayed in table 3 and plotted in figure 6. In each case we separated the observations 
by 10 attempted pivot transformations. A plot of logp;(0) against n is linear, which 
suggests that 

p:(0) = Coe-aon ( 4 4  
where a. and CO are positive constants. A linear least-squares fit to the data in table 3 
gives 

a. = (7.6 f 0 . 9 ) ~  

CO = 1.0011 f 0.0003 

x 2  = 2.7 
Prob ( x 2  2 2.7) = 0.44 

where x 2  is the weighted mean-square deviation from the regression line. It should be 
distributed as x 2 ( s - 2 ) ,  where s is the number of data points in the fit. Prob ( x 2  2 2.7) 
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is the probability of obtaining a fit as poor as this, in this case 44%, so that we are 
confident that equation (4.1) is indeed satisfied by our data. 

4.2. Knot probabi l i ty  i n  poor so lven t s  

In this section we explore the effect of the solvent on the knot probability of polygons. 
We expect that a poor solvent will favour collapsed polygon configurations, so that it 
seems likely that the knot probability will increase with 4. Let p t ( 0 )  be the probability 
that a polygon with contact potential 4 and n edges is the unknot. Let & ( K )  = 
1 - p t ( 0 ) .  To investigate these probabilities we performed some runs at n = 200, 
400 and 800 for values of 4 varying between 0 and 0.15. The results for n = 800 are 
shown in table 4 and table 5. We list all the knots found in these runs in table 4, 
and in table 5 we list the knot probabilities and autocorrelation times for these runs. 
To compensate for the lower acceptance rate of the pivot algorithm for large 4, we 
increased the number of iterations between observations, m, from 10 to  250 as 4 
increased from 0 to 0.15. The number of observations, N ,  was typically 50000. The 
autocorrelation times become long for higher values of 4. 

Table 4. The knots found in the batch runs of 50000 observations for polygons with 
n = 800 and Q between 0 and 0.15. The numbers of prime and compound knots are 
listed. The columns marked n.*, n = 5,6,7, are all the prime knots with n crossings. 

d Prime Composite 31 41 5* 6r 7* 31#31 31#41 

0 212 1 202 10 0 0 0 1 0 
0.05 701 0 644 54 3 0 0 0 0 
0.10 2 500 61 1845 388 235 1 31 17 30 
0.125 4594 243 4209 226 103 22 34 230 13 
0.1375 11162 1020 7995 753 1981 62 147 399 130 
0.15 18713 2854 10746 1404 4749 612 647 1163 261 

Table 5. The knot probability p $ ( K )  for polygons with n = 800 and for q5 between 
0 and 0.15. The autocorrelations TK are given in units of m iterations, where m is 
the number of attempted pivot transformations between every two observations. 

4 N m P t  (h') TK 

0.05 50 000 15 (1.40f0.25)~10-~ 11.2 f 0.9 
0 50 000 10 (4.26 f 0.69)~10-~ 2.8 j, 0.1 

0.10 50000 20 (5.1 f 1.3)X10-2 80 f 20 
0.125 50 000 120 (9.7f 1.3)~10-~ 44 f 6 
0.1375 50 000 175 (2.43 f 0.53)~10-~ 382 f 170 
0.15 70 000 250 (4.31 f 0.50) X lo-' 352 f 130 

We plotted p $ ( K )  against 4 for n = 200, 400 and 800, as in figure 7. For n = 800 
we expect that there is a 'collapse transition' near 0.15, as we saw in subsection 2.2. 
We observe a dramatic rise in the knot probability as we approach this transition. 
We do not have any theoretical prediction such as theorem 4.1 for polygons in a bad 
solvent, but it is interesting to consider to what extent the linear behaviour in figure 7 
survives aa the solvent becomes increasingly poor. We therefore assume that 

p g ( 0 )  FZ C+e-a*". (4.3) 
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Figure 7. Plot of logp$(K) against Q for n = 200 (A), 400 (O), and 800 (0). The 
full curves are drawn aa a guide to the eye. 

To explore this possibility we calculated p i ( K )  for 4 = 0.10 and 0.125 for values of 
n between 200 and 800, Our results are presented in table 6. We performed 50000 
observations separated by 50 attempted transformations for 4 = 0.10 and by 125 
attempted transformations for 4 = 0.125 for each data point. 

Table 6. The knot probability p$(K) for 4 = 0.10 and 0.125 for n = 200 to n = 800. 

200 (0.68f0.12)X10-2 (1 .44 f  0.18)X10'2 
300 ( 1 . 3 3 f 0 . 2 4 ) ~ 1 0 - ~  (2 .95 f  0.44)X10'z 
400 (2 .28 f  0 . 2 9 ) ~ I O ' ~  (4 .59 f  0 . 6 5 ) ~ l O ' ~  
500 (3,15 f 0.52)X10-2 (7 .00 f  0.83)X10'z 
600 ( 3 . 9 3 f  0.70)X10-2 (7.5f 1.1)X10-2 
800 (5.1 f 1.3)X10'2 ( 9 . 7 f  1,2)X10'2 

In figure 8, we plot l o g p i ( 0 )  against n for 4 = 0.10 and 0.125. The linear nature 
of the plots supports the ansatz (4.3). A least-squares fit to the data gives 

Q ~ , ~ ~  = (8.6f 1 . 0 ) ~ 1 0 ' ~  

Co,,o = 1,0112 & 0.0028 

x2 = 0.22 

Prob ( x 2  2 0.22) = 0.93 

for 4 = 0.10 and 
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Figure 8. Plot of logp$(0) against n for 6 = 0, 0.10 and 0.125. The full lines are 
the best fits to the data (4.3), (4.4) and (4.5). 

00,125 = (1.61 f 0.14)~lO’~ 
C0.125 = 1.0177 f 0.0039 
x2 = 0.43 
Prob ( x 2  2 0.43) = 0.79 

(4.5) 

for 6 = 0.125. The numerical data provide excellent support for our ansatz (4.3). We 
see that the x2 values of both fits are very satisfactory. CY+ increases dramatically with 
increasing 4, so that the knot probability should be much higher in poor solvents than 
in good solvents. These results also suggest that there is a connection between the 
collapsed nature of the polygons and the probability that they are knots. We explore 
this connection in the next subsection. 

4.3. Collapsed polygons  and kno t s  

We have not defined clearly what is meant by a ’collapsed polygon’, and there are 
several possible definitions. In this subsection we say that the higher the number 
of contacts in a polygon, the more collapsed it is. This is a natural definition, for 
the more contacts, the more the polygon has excluded the solvent molecules from its 
immediate vicinity. 

We have generated a large pool of data in calculating the knot probability of a 
polygon at  fixed n for various values of 4, Associated with each polygon is a contact 
number and a knot type. In principle, we can therefore calculate the probability that 
a polygon with given contact number is a knot. To present smooth data, we calculated 
the knot probability of polygons with contact number in an interval [c,  c +  6c) instead. 



3588 E J Janse van Rensburg and 5’ G Whittington 

0.10 I 

Contact nunber 

n 
e a 

Contact number 

Figure 9. 
(4) n = 400, 6c = 20, and ( b )  n = 800, 6c = 25. 

Histograms of the knot probability against the contact number, for 

In figure 9(a )  we plotted this histogram for n = 400 and 6c = 20, and in figure 9(b) 
for n = 800 and 6 c  = 25. The knot probability is virtually zero for polygons with a 
low contact number, but rises rapidly once a threshold has been crossed, to as much 
as 0.20 for c % 700 and n = 400 and 0.70 for c % 1400 and n = 800. 

5. Conclusions 

In this paper we have accomplished three goals. The first was to develop an efficient 
numerical algorithm for the simulation of polygons and the detection of knots in 
polygons. The pivot algorithm proved successful in this regard, especially for small 
values of 4, For larger values o f 4  we were plagued by long autocorrelation times, 
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mainly due to  the high rejection rate of proposed polygons in the pivot algorithm. 
This is partly compensated for by an increase in the rate at which polygons are being 
proposed. It is a strength of the pivot algorithm that it spends the least amount of 
time looking at polygons that will be rejected, and the longest time on those that will 
be accepted (Madras and Sokal 1988). 

Secondly, we successfully introduced the idea of ‘smoothing’ into our algorithm. 
We saw that it brings a dramatic improvement in the performance of the algorithm. In 
addition to  this, we supplemented the algorithm with two Reidemeister moves, which 
did not prove as effective as smoothing, but we pointed out that they may be essential 
in the calculation of alternative knot invariants, such as the Jones polynomial. 

Our third accomplishment is the calculation of the knot probability of lattice 
polygons. We verified rigorous work in this regard (theorem 4.1) and showed that 
there is probably a relationship like equation (4.1) for polygons in bad solvents too. 
We also established a correlation between the knot probability of a polygon and the 
state of collapse: the more collapsed the polygon is, the more probable it is that it is a 
knot, In this sense, our results at large $ are completely compatible with the studies 
on polygons with Brownian statistics (Vologodskii e t  al  1974, Frank-Kamenetskii e t  
al 1975, Michels and Wiegel 1986) where it is known that it is very likely for polygons 
to  be knotted (see also the work of Kendall (1979) in this regard). 

We conclude with a few remarks. 
(1) Most of the CPU time in these calculations was spent looking for crossings in 

the projections of polygons. This part of the computation is ripe for vectorisation 
on a computer with parallel architecture. If implemented this will bring a major 
improvement in the performance of the algorithm with a resulting improvement in the 
error bars of the parameters that we calculated. 

(2) It is believed that most compound knots are chiral. To test this prediction it 
is necessary to calculate an invariant which will detect chirality in knots, such as the 
Jones polynomial. The computation of this polynomial will take O(2’) operations if 
the projection of the knot has i crossings. We showed that the Reidemeister moves I 
and I1 can bring a major benefit to such a calcula,tion, if it is supplemented by a 
procedure such as smoothing. 

(3) By using methods similar to that of Sumners and Whittington (1988) and 
Pippenger (1989) we can show that there are exponentially few lattice polygons which 
are prime knots in the limit n+m. Our data are not nearly good enough to study 
the rate at  which knots turn compound with increasing n ,  though we can make a few 
observations. For $ = 0.125 the fraction of compound knots increases from 0% at 
n = 200 to  3.2% at n = 600 and 5.0% at n = 800. There is also a similar increase in 
the fraction of compound knots with d .  For n = 800, the fraction of compound knots 
is 0% at 4 = 0,  5.0% at 4 = 0.125 and 13.0% at q5 = 0.15. 

(4) We established a firm connection between contacts in polygons and the prob- 
ability that the polygon is a knot. This has some significance in the analysis of DNA 
experiments. We now expect that a circular strand of DNA is more likely to  be knot- 
ted if it is folded by an enzyme like topoisomerase (Sumners 1986) or if it is in a bad 
solvent. Water is a good solvent, for DNA molecules, and our results indicate a low 
probability of knotting in a good solvent. The observation of knotted strands in the 
cell nucleus is therefore likely to be the result of the action of enzymes in the cell. 
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